The Impact of COVID-19 Pandemic on Children: Evidence, Underlying Mechanisms and Interventions
Swarup K. Chakrabarti1 and Dhrubajyoti Chattopadhyay1,2
1H. P. Ghosh Research Center, HIDCO (II), EK Tower, New Town, Kolkata, West Bengal 700161, India.
2Sister Nivedita University, DG Block (Newtown), Action Area I, 1/2, New Town, West Bengal 700156, India.
*Corresponding author
*Swarup K. Chakrabarti, H. P. Ghosh Research Center, HIDCO (II), EK Tower, New Town, Kolkata, West
Bengal 700161, India.
DOI: 10.55920/JCRMHS.2023.04.001150
- Mahase E. Covid-19: concerns grow over inflammatory syndrome emerging in children. BMJ. 2020 Apr 28;369:m1710. doi: 10.1136/bmj.m1710
- Deoni SC, Beauchemin J, Volpe A, Dâ Sa V; RESONANCE Consortium. Impact of the COVID-19 Pandemic on Early Child Cognitive Development: Initial Findings in a Longitudinal Observational Study of Child Health. medRxiv [Preprint]. 2021 Aug 11:2021.08.10.21261846. doi: 10.1101/2021.08.10.21261846. Update in: Wellcome Open Res. 2021 May 19;6:120.
- Conlon C, McDonnell T, Barrett M, Cummins F, Deasy C, Hensey C, et al. The impact of the COVID-19 pandemic on child health and the provision of Care in Pediatric Emergency Departments: a qualitative study of frontline emergency care staff. BMC Health Serv Res 21, 279 (2021). doi:10.1186/s12913-021-06284-9
- Hoffman JA, Miller EA. Addressing the Consequences of School Closure Due to COVID-19 on Children's Physical and Mental Well-Being [published online ahead of print, 2020 Aug 20]. World Med Health Policy. 2020;10.1002/wmh3.365. doi:10.1002/wmh3.365
- She J, Liu L, Liu W. COVID-19 epidemic: Disease characteristics in children. J Med Virol. 2020 Jul;92(7):747-754. doi: 10.1002/jmv.25807.
- Riffe T, Acosta E, COVerAGE-DB Project Team. CoVerAGE-DB: a database of age-structured COVID-19 cases and deaths. MPIDR Working Paper WP-2020-32. doi:10.4054/MPIDR-WP-2020-0323.
- Wei M, Yuan J, Liu Y, Fu T, Yu X, Zhang ZJ. Novel Coronavirus Infection in Hospitalized Infants Under 1 Year of Age in China. JAMA. 2020 Apr 7;323(13):1313-1314. doi: 10.1001/jama.2020.2131.
- Bhuiyan MU, Stiboy E, Hassan MZ, Chan M, Islam MS, Haider N, et al. Epidemiology of COVID-19 infection in young children under five years: A systematic review and meta-analysis. Vaccine. 2021 Jan 22;39(4):667-677. doi: 10.1016/j.vaccine.2020.11.078.
- Kotlyar AM, Grechukhina O, Chen A, Popkhadze S, Grimshaw A, Tal O, et al. Vertical transmission of coronavirus disease 2019: a systematic review and meta-analysis. Am J Obstet Gynecol. 2021 Jan;224(1):35-53.e3. doi: 10.1016/j.ajog.2020.07.049.
- Vidya G, Kalpana M, Roja K, Nitin JA, Taranikanti M. Pathophysiology and Clinical Presentation of COVID-19 in Children: Systematic Review of the Literature. Maedica (Bucur). 2021 Sep;16(3):499-506. doi: 10.26574/maedica.2020.16.3.499.
- Saha J, Chouhan P. Do malnutrition, pre-existing morbidities, and poor household environmental conditions aggravate susceptibility to Coronavirus disease (COVID-19)? A study on under-five children in India. Child Youth Serv Rev. 2021 Sep;128:105962. doi: 10.1016/j.childyouth.2021.105962.
- Keusch GT. The history of nutrition: malnutrition, infection and immunity. J Nutr. 2003 Jan;133(1):336S-340S. doi: 10.1093/jn/133.1.336S.
- Ritz BW, Gardner EM. Malnutrition and energy restriction differentially affect viral immunity. J Nutr. 2006 May;136(5):1141-4. doi: 10.1093/jn/136.5.1141.
- Silverman MN, Pearce BD, Biron CA, Miller AH. Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol. 2005;18(1):41-78. doi:10.1089/vim.2005.18.4.
- Jha S, Mehendale AM. Increased Incidence of Obesity in Children and Adolescents Post-COVID-19 Pandemic: A Review Article. Cureus. 2022 Sep 20;14(9):e29348. doi: 10.7759/cureus.29348.
- Govil-Dalela T, Sivaswamy L. Neurological Effects of COVID-19 in Children. Pediatr Clin North Am. 2021 Oct;68(5):1081-1091. doi: 10.1016/j.pcl.2021.05.010.
- Balcom EF, Nath A, Power C. Acute and chronic neurological disorders in COVID-19: potential mechanisms of disease. Brain. 2021 Dec 31;144(12):3576-3588. doi: 10.1093/brain/awab302
- Isensee C, Schmid B, Marschik PB, Zhang D, Poustka L. Impact of COVID-19 pandemic on families living with autism: An online survey. Res Dev Disabil. 2022 Oct;129:104307. doi: 10.1016/j.ridd.2022.104307.
- Lugo-Marín J, Gisbert-Gustemps L, Setien-Ramos I, Español-Martín G, Ibañez-Jimenez P, Forner-Puntonet M, et al. COVID-19 pandemic effects in people with Autism Spectrum Disorder and their caregivers: Evaluation of social distancing and lockdown impact on mental health and general status. Res Autism Spectr Disord. 2021 May;83:101757. doi: 10.1016/j.rasd.2021.101757. 18.
- Singh S, Roy D, Sinha K, Parveen S, Sharma G, Joshi G. Impact of COVID-19 and lockdown on mental health of children and adolescents: A narrative review with recommendations. Psychiatry Res. 2020 Nov;293:113429. doi: 10.1016/j.psychres.2020.113429.
- Panchal U, Salazar de Pablo G, Franco M, Moreno C, Parellada M, Arango C, Fusar-Poli P. The impact of COVID-19 lockdown on child and adolescent mental health: systematic review. Eur Child Adolesc Psychiatry. 2021 Aug 18:1–27. doi: 10.1007/s00787-021-01856-w.
- Theberath M, Bauer D, Chen W, Salinas M, Mohabbat AB, Yang J, et al. Effects of COVID-19 pandemic on mental health of children and adolescents: A systematic review of survey studies. SAGE Open Med. 2022 Mar 30;10:20503121221086712. doi: 10.1177/20503121221086712.
- Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation. 2021 Nov 6;18(1):258. doi: 10.1186/s12974-021-02309-6.
- Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Front Aging Neurosci. 2022 Mar 25;14:825086. doi: 10.3389/fnagi.2022.825086.
- Thepmankorn P, Bach J, Lasfar A, Zhao X, Souayah S, Chong ZZ, Souayah N. Cytokine storm induced by SARS-CoV-2 infection: The spectrum of its neurological manifestations. Cytokine. 2021 Feb;138:155404. doi: 10.1016/j.cyto.2020.155404.
- Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the Blood-Brain Barrier. Int J Mol Sci. 2021 Mar 6;22(5):2681. doi: 10.3390/ijms22052681.
- Haidar MA, Shakkour Z, Reslan MA, Al-Haj N, Chamoun P, Habashy K, et al. SARS-CoV-2 involvement in central nervous system tissue damage. Neural Regen Res. 2022 Jun;17(6):1228-1239. doi: 10.4103/1673-5374.327323.
- Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020 Jul;87:18-22. doi: 10.1016/j.bbi.2020.03.031.
- Serrano GE, Walker JE, Arce R, Glass MJ, Vargas D, Sue LI, et al. Mapping of SARS-CoV-2 Brain Invasion and Histopathology in COVID-19 Disease. medRxiv [Preprint]. 2021 Feb 18:2021.02.15.21251511. doi: 10.1101/2021.02.15.21251511.
- Wang H, He Y, Sun Z, Ren S, Liu M, Wang G, Yang J. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation. 2022 Jun 6;19(1):132. doi: 10.1186/s12974-022-02492-0.
- Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial Inflammatory-Metabolic Pathways and Their Potential Therapeutic Implication in Major Depressive Disorder. Front Psychiatry. 2022 Jun 16;13:871997. doi: 10.3389/fpsyt.2022.871997.
- Appelbaum LG, Shenasa MA, Stolz L, Daskalakis Z. Synaptic plasticity and mental health: methods, challenges and opportunities. Neuropsychopharmacology. 2023 Jan;48(1):113-120. doi: 10.1038/s41386-022-01370-w.
- Ramezani M, Simani L, Karimialavijeh E, Rezaei O, Hajiesmaeili M, Pakdaman H. The Role of Anxiety and Cortisol in Outcomes of Patients With Covid-19. Basic Clin Neurosci. 2020 Mar-Apr;11(2):179-184. doi: 10.32598/bcn.11.covid19.1168.2.
- Dedoncker J, Vanderhasselt MA, Ottaviani C, Slavich GM. Mental health during the COVID-19 pandemic and beyond: The importance of the vagus nerve for biopsychosocial resilience. Neurosci Biobehav Rev. 2021 Jun;125:1-10. doi: 10.1016/j.neubiorev.2021.02.010.
- Fung MH, Taylor BK, Embury CM, Spooner RK, Johnson HJ, Willett MP, et al. Cortisol changes in healthy children and adolescents during the COVID-19 pandemic. Stress. 2022 Jan;25(1):323-330. doi: 10.1080/10253890.2022.2125798.
- Nikolopoulou GB, Maltezou HC. COVID-19 in Children: Where do we Stand? Arch Med Res. 2022 Jan;53(1):1-8. doi: 10.1016/j.arcmed.2021.07.002.
- Kachru S, Kaul D. COVID-19 manifestations in children. Curr Med Res Pract. 2020 Jul-Aug;10(4):186-188. doi: 10.1016/j.cmrp.2020.07.008.
- Brodin P. SARS-CoV-2 infections in children: Understanding diverse outcomes. Immunity. 2022 Feb 8;55(2):201-209. doi: 10.1016/j.immuni.2022.01.014.
- Tian F, Yang R, Chen Z. Safety and efficacy of COVID-19 vaccines in children and adolescents: A systematic review of randomized controlled trials. J Med Virol. 2022 Oct;94(10):4644-4653. doi: 10.1002/jmv.27940.
- COVID-19 update: Pfizer/BioNTech and Moderna vaccines authorized for children ≥6 months old. Med Lett Drugs Ther. 2022 Jul 11;64(1654):110-112.
- Olson MS, Newhams MM, Halasa NB, Price AM, Boom JA, Sahni LC, et al. Effectiveness of BNT162b2 Vaccine against Critical Covid-19 in Adolescents. N Engl J Med 2022; 386:713-723
DOI: 10.1056/NEJMoa2117995. - Scheaffer SM, Lee D, Whitener B, Ying B, Wu K, Jani H, et al. Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant. bioRxiv [Preprint]. 2022 Sep 13:2022.09.12.507614. doi: 10.1101/2022.09.12.507614. Update in: Nat Med. 2022 Oct 20.
- 43.CDC Expands Updated COVID-19 Vaccines to Include Children Ages 6 Months through 5 Years. CDC Newsroom. https://www.cdc.gov/media/releases/2022/s1209-covid-vaccine.html. 44. Pfizer-BioNTech COVID-19 Vaccine Receives FDA Emergency Use Authorization for Children 6 Months through 4 Years of Age. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-biontech-covid-19-vaccine-receives-fda-emergency-use.
- Tuccori M, Ferraro S, Convertino I, Cappello E, Valdiserra G, Blandizzi C, Maggi F, Focosi D. Anti-SARS-CoV-2 neutralizing monoclonal antibodies: clinical pipeline. MAbs. 2020 Jan-Dec;12(1):1854149. doi: 10.1080/19420862.2020.1854149.
- Teoh Z, Danziger-Isakov L, Courter JD, Frenck RW Jr, Grimley MS, Marsh RA, et al. Tocilizumab for Treatment of Children and Young Adults With Severe Acute COVID-19: Experience at a Quaternary-care Children's Hospital. Pediatr Infect Dis J. 2023 Feb 1;42(2):119-121. doi: 10.1097/INF.0000000000003763
- Nasonov E, Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother. 2020 Nov;131:110698. doi: 10.1016/j.biopha.2020.110698.
- Wang F, Li L, Dou Y, Shi R, Duan X, Liu H, et al. Etesevimab in combination with JS026 neutralizing SARS-CoV-2 and its variants. Emerg Microbes Infect. 2022 Dec;11(1):548-551.
- Deeks ED. Casirivimab/Imdevimab: First Approval. Drugs. 2021 Nov;81(17):2047-2055. doi: 10.1007/s40265-021-01620-z.
- Zhou T, Yuan Z, Weng J, Pei D, Du X, He C, Lai P. Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol. 2021 Feb 12;14(1):24. doi: 10.1186/s13045-021-01037-x.
- Wang LT, Ting CH, Yen ML, Liu KJ, Sytwu HK, Wu KK, Yen BL. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci. 2016 Nov 4;23(1):76. doi: 10.1186/s12929-016-0289-5.
- Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells. 2019 Aug 13;8(8):886. doi: 10.3390/cells8080886.
- Shi L, Wang L, Xu R, Zhang C, Xie Y, Liu K, et al. Mesenchymal stem cell therapy for severe COVID-19. Signal Transduct Target Ther. 2021 Sep 8;6(1):339. doi: 10.1038/s41392-021-00754-6.
- Xu R, Feng Z, Wang FS. Mesenchymal stem cell treatment for COVID-19. EBioMedicine. 2022 Mar;77:103920. doi: 10.1016/j.ebiom.2022.103920.
- Schu S, Nosov M, O'Flynn L, Shaw G, Treacy O, Barry F, et al. Immunogenicity of allogeneic mesenchymal stem cells. J Cell Mol Med. 2012 Sep;16(9):2094-103. doi: 10.1111/j.1582-4934.2011.01509.x.
- Harrell CR, Djonov V, Volarevic V. The Cross-Talk between Mesenchymal Stem Cells and Immune Cells in Tissue Repair and Regeneration. Int J Mol Sci. 2021 Mar 1;22(5):2472. doi: 10.3390/ijms22052472.
- 57.Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016 Mar 15;44(3):450-462. doi: 10.1016/j.immuni.2016.02.015.
- Lanzoni G, Linetsky E, Correa D, Messinger Cayetano S, Alvarez RA, Kouroupis D, et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl Med. 2021 May;10(5):660-673. doi: 10.1002/sctm.20-0472.
- Monsel A, Hauw-Berlemont C, Mebarki M, Heming N, Mayaux J, Nguekap Tchoumba O, et al. Treatment of COVID-19-associated ARDS with mesenchymal stromal cells: a multicenter randomized double-blind trial. Crit Care. 2022 Feb 21;26(1):48. doi: 10.1186/s13054-022-03930-4.
- Suksatan W, Chupradit S, Yumashev AV, Ravali S, Shalaby MN, Mustafa YF, et al. Immunotherapy of multisystem inflammatory syndrome in children (MIS-C) following COVID-19 through mesenchymal stem cells. Int Immunopharmacol. 2021 Dec;101(Pt B):108217. doi: 10.1016/j.intimp.2021.108217.
- Zhou T, Yuan Z, Weng J, Pei D, Du X, He C, Lai P. Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol. 2021 Feb 12;14(1):24. doi: 10.1186/s13045-021-01037-x.
- Rezabakhsh A, Mahdipour M, Nourazarian A, Habibollahi P, Sokullu E, Avci ÇB, Rahbarghazi R. Application of exosomes for the alleviation of COVID-19-related pathologies. Cell Biochem Funct. 2022 Jul;40(5):430-438. doi: 10.1002/cbf.3720.
- Babaei G, Zare N, Mihanfar A, Ansari MHK. Exosomes and COVID-19: challenges and opportunities. Comp Clin Path. 2022;31(2):347-354. doi: 10.1007/s00580-021-03311-3.
- Hosseini NF, Dalirfardouei R, Aliramaei MR, Najafi R. Stem cells or their exosomes: which is preferred in COVID-19 treatment? Biotechnol Lett. 2022 Feb;44(2):159-177. doi: 10.1007/s10529-021-03209-8.
- Gurunathan S, Kang MH, Kim JH. Diverse Effects of Exosomes on COVID-19: A Perspective of Progress From Transmission to Therapeutic Developments. Front Immunol. 2021 Jul 28;12:716407. doi: 10.3389/fimmu.2021.716407.
- Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells as Treatment for Severe COVID-19. Stem Cells Dev. 2020 Jun 15;29(12):747-754. doi: 10.1089/scd.2020.0080.
- Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S, Hall MD. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent Sci. 2020 May 27;6(5):672-683. doi: 10.1021/acscentsci.0c00489.
- Jiang Y, Yin W, Xu HE. RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19. Biochem Biophys Res Commun. 2021 Jan 29;538:47-53. doi: 10.1016/j.bbrc.2020.08.116.
- FDA Approves First Treatment for COVID-19. https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19.
- Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):449-463. doi: 10.2183/pjab.93.027.
- Joshi S, Parkar J, Ansari A, Vora A, Talwar D, Tiwaskar M, et al. Role of favipiravir in the treatment of COVID-19. Int J Infect Dis. 2021 Jan;102:501-508. doi: 10.1016/j.ijid.2020.10.069.
- Ozsurekci Y, Oygar PD, Gürlevik SL, Kesici S, Ozen S, Kurt Sukur ED, et al. Favipiravir use in children with COVID-19 and acute kidney injury: is it safe? Pediatr Nephrol. 2021 Nov;36(11):3771-3776. doi: 10.1007/s00467-021-05111-x.
- Najjar-Debbiny R, Gronich N, Weber G, Khoury J, Amar M, Stein N, et al. Effectiveness of Paxlovid in Reducing Severe COVID-19 and Mortality in High Risk Patients. Clin Infect Dis. 2022 Jun 2:ciac443. doi: 10.1093/cid/ciac443.
- Zheng Q, Ma P, Wang M, Cheng Y, Zhou M, Ye L, et al. Efficacy and safety of Paxlovid for COVID-19:a meta-analysis. J Infect. 2023 Jan;86(1):66-117. doi: 10.1016/j.jinf.2022.09.027.
- Burrage DR, Koushesh S, Sofat N. Immunomodulatory Drugs in the Management of SARS-CoV-2. Front Immunol. 2020 Aug 13;11:1844. doi: 10.3389/fimmu.2020.01844.
- Al-Hajeri H, Baroun F, Abutiban F, Al-Mutairi M, Ali Y, Alawadhi A, et al. Therapeutic role of immunomodulators during the COVID-19 pandemic- a narrative review. Postgrad Med. 2022 Mar;134(2):160-179. doi: 10.1080/00325481.2022.2033563.
- Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011 Mar 15;335(1):2-13. doi: 10.1016/j.mce.2010.04.005.
- Barnes PJ. How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br J Pharmacol. 2006 Jun;148(3):245-54. doi: 10.1038/sj.bjp.0706736.
- Patel SK, Saikumar G, Rana J, Dhama J, Yatoo MI, Tiwari R, et al. Dexamethasone: A boon for critically ill COVID-19 patients? Travel Med Infect Dis. 2020 Sep-Oct;37:101844. doi: 10.1016/j.tmaid.2020.101844.
- Sharun K, Tiwari R, Dhama J, Dhama K. Dexamethasone to combat cytokine storm in COVID-19: Clinical trials and preliminary evidence. Int J Surg. 2020 Oct;82:179-181. doi: 10.1016/j.ijsu.2020.08.038.
- Akbarzadeh-Khiavi M, Torabi M, Rahbarnia L, Safary A. Baricitinib combination therapy: a narrative review of repurposed Janus kinase inhibitor against severe SARS-CoV-2 infection. Infection. 2022 Apr;50(2):295-308. doi: 10.1007/s15010-021-01730-6.
- Jorgensen SCJ, Tse CLY, Burry L, Dresser LD. Baricitinib: A Review of Pharmacology, Safety, and Emerging Clinical Experience in COVID-19. Pharmacotherapy. 2020 Aug;40(8):843-856. doi: 10.1002/phar.2438.
- Boast A, Curtis N, Holschier J, Purcell R, Bannister S, Plover C, et al. An Approach to the Treatment of Children With COVID-19. Pediatr Infect Dis J. 2022 Aug 1;41(8):654-662. doi: 10.1097/INF.0000000000003576.
- Di Sotto A, Vitalone A, Di Giacomo S. Plant-Derived Nutraceuticals and Immune System Modulation: An Evidence-Based Overview. Vaccines (Basel). 2020 Aug 22;8(3):468. doi: 10.3390/vaccines8030468.
- Raheem A, Liang L, Zhang G, Cui S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front Immunol. 2021 Apr 8;12:616713. doi: 10.3389/fimmu.2021.616713.
- Kurian SJ, Unnikrishnan MK, Miraj SS, Bagchi D, Banerjee M, Reddy BS, et al. Probiotics in Prevention and Treatment of COVID-19: Current Perspective and Future Prospects. Arch Med Res. 2021 Aug;52(6):582-594. doi: 10.1016/j.arcmed.2021.03.002.
- Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods. 2019 Mar 9;8(3):92. doi: 10.3390/foods8030092.
- Reinisalo M, Kårlund A, Koskela A, Kaarniranta K, Karjalainen RO. Polyphenol Stilbenes: Molecular Mechanisms of Defence against Oxidative Stress and Aging-Related Diseases. Oxid Med Cell Longev. 2015;2015:340520. doi: 10.1155/2015/340520.
- Pasquereau S, Nehme Z, Haidar Ahmad S, Daouad F, Van Assche J, Wallet C, et al. Resveratrol Inhibits HCoV-229E and SARS-CoV-2 Coronavirus Replication In Vitro. Viruses. 2021 Feb 23;13(2):354. doi: 10.3390/v13020354.
- Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A, Ray S. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. J Biomol Struct Dyn. 2021 Oct;39(16):6306-6316. doi: 10.1080/07391102.2020.1796811.
- Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules. 2021 Jan 5;26(1):229. doi: 10.3390/molecules26010229.
- Xiao S, Liu W, Bi J, Liu S, Zhao H, Gong N, et al. Anti-inflammatory effect of hesperidin enhances chondrogenesis of human mesenchymal stem cells for cartilage tissue repair. J Inflamm (Lond). 2018 Jul 20;15:14. doi: 10.1186/s12950-018-0190-y.
- Haggag YA, El-Ashmawy NE, Okasha KM. Is hesperidin essential for prophylaxis and treatment of COVID-19 Infection? Med Hypotheses. 2020 Nov;144:109957. doi: 10.1016/j.mehy.2020.109957.
- Hermel M, Sweeney M, Ni YM, Bonakdar R, Triffon D, Suhar C, et al. Natural Supplements for COVID19-Background, Rationale, and Clinical Trials. J Evid Based Integr Med. 2021 Jan-Dec;26:2515690X211036875. doi: 10.1177/2515690X211036875.