Intracellular free calcium concentration and oxidative damage in erythrocytes from workers occupationally exposed to organophosphate pesticides
Eva G. Ortega Freyre1, Alfredo Téllez Valencia1, Dealmy Delgadillo Guzman2, Edgar F. Lares Bayona3, Graciela Zambrano Galván1 and Martha A. Quintanar Escorza1*
1Faculty of Medicine and Nutrition, Juarez University of Durango State, Mexico.
2Faculty of Medicine, Autonomous University of Coahuila, Torreon Unit, México
3Scientific Research Institute, Juarez University of Durango State, Mexico.
*Corresponding author
*Martha-Angelica Quintanar-Escorza. Biochemistry Research Laboratory, Faculty of Medicine and Nutrition, Juarez University of Durango State, Mexico. University Ave. and Fanny Anitúa st. Zip Code 34,000. Durango, Dgo., México.
DOI: 10.55920/JCRMHS.2023.03.001107
Table A.2: Oxidation and antioxidant response in erythrocytes by groups of exposure to OP. The concentration of thiobarbituric acid reactive species (TBARS) was determined using a spectrophotometric method (532 nm). Total antioxidant capacity (milliequivalents Trolox) was determined using the spectrophotometric method (405-450 nm). The values are means ± SD. * Significance (P < 0.05).
Table A.3: Correlations of the distributions of AChE (U/ml), Lipid peroxidation (TBARS nmol MDA/ml.), Total antioxidant capacity (milliequivalents Trolox mM), [Ca2+]i (nmol/l) , Erythrocyte osmotic fragility (mOsM) , hematocrit (%) of workers included in the study. R-values (R-Pearson hypothesis test) r*values (Spearman's Rho hypothesis test); p statistical significance of the hypothesis test. **The correlation is significant <0.01.
Figure A.1: Distribution of the Lipid peroxidation (TBARS nmoles of MDA ml.) and Free Intracellular Calcium (nmol/l [Ca2+]i) values in erythrocytes for the group not exposed and exposed to OP. The average horizontal line corresponds to the cut-off point of [Ca2+]i (50.0 nmol/l of [Ca2+]i) , average vertical line corresponds to the cut-off point of the Lipid peroxidation variable.
Figure A.2: Distribution of values of erythrocyte osmotic fragility and [Ca 2+ ] i in erythrocytes regarding AChE values in workers included in the study.
Table A.1. found that 17.7% of the total study population have glucose levels above the reference values, 16.1% and 53.2% have high cholesterol and triglycerides, respectively.
To evaluate the relationship between occupational exposure to organophosphate pesticides with increased oxidative damage and increased intracellular calcium concentration in erythrocytes; Oxidative damage variables were determined (Lipoperoxidation and total antioxidant capacity), free intracellular calcium, and hematological variables (Osmotic fragility in erythrocytes and hematocrit levels) both in occupationally exposed subjects and in subjects not exposed to these pesticides.
The oxidative damage parameters are shown in Table A.2. The Lipid peroxidation (TBARS concentration) was not significantly different between exposed and not exposed groups (p=0.47), indicating that the oxidative state was not related to the exposure to OP. The relationship between state parameters showed a moderate negative correlation (Rho= 0.68, p=0.001). Statistical analysis was performed to determine the relationship of variables (age, obesity, high blood pressure, alcoholism, smoking, use of medications, and other diseases) that have been associated with oxidative damage (lipid peroxidation). The data indicated that only obesity was associated with oxidative damage (p=0.004). Regarding the total antioxidant capacity, an association with the use of drugs (p=0.002), smoking (p=0.04), other diseases (p=0.001), and obesity (p=0.02) was found.
Regarding the hematological parameters, WOE to OP showed a statistically significant increase (p< 0.05) in [Ca2+]i in erythrocytes, 64.02±13.08 compared to 38.58 ± 10.97 nmol/l from not exposed, which corresponds to 1.65 times greater. Similarly, the evaluation of hematocrit (%) showed a difference (p=0.0001) in both groups (49.0±1.6 and 45.4±2.8%, for exposed and not exposed, respectively). On the contrary, no difference was found in the case of osmotic fragility (160.8±17.9 vs. 168.6±24.1 mOsm, for exposed and not exposed, respectively) (p=0.187).
The oxidative stress (lipid peroxidation) in erythrocytes from WOE to OP was not correlated with high [Ca2+]i. However, a correspondence of the exposed group with the highest levels of [Ca2+]i was observed (Figure 1).
In WOE to OP, activity AChE was negatively correlated with [Ca2+]i and osmotic fragility (r=-0.63 and r= -0.3 4, respectively) (Figure 2) and positively with hematocrit (r= 0.45) (Table A.3). It is worth noting that, as mentioned above, osmotic fragility showed no differences in both groups. However, it was correlated with AChE activity, 5% more osmotic fragility than those not exposed due to the increase in [Ca2+]i, which could trigger a low hematocrit in workers exposed to OP.
Workers exposed to OP showed dive symptoms and clinical signs associates with intoxication. The most common neurological symptoms reported included: headache (22.6%), tearing (12.9%), muscle weakness (9.7%), as well as intense salivation (9.7%). Among exposed workers to OP, 26% reported at least one neurological symptom. Furthermore, to complement this part, a general urine test (GUT) was carried out to each participant, detecting the presence of proteins in urine in two subjects belonging to the exposed group.
- Jokanović, M., 2018. Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: A review. Toxicology 410, 125–131. https://doi.org/10.1016/j.tox.2018.09.009
- Naughton, S.X., Terry, A. V., 2018. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 408, 101–112. https://doi.org/10.1016/j.tox.2018.08.011
- Díaz, S.M.; Sánchez, F.; Varona, M.; Eljach, V.; Muñoz G, M.N. Niveles de Colinesterasa En Cultivadores de Papa Expuestos Ocupacionalmente a Plaguicidas, Totoró, Cauca. Rev. la Univ. Ind. Santander. Salud, 2017, 49, 85–92. http://dx.doi.org/10.18273/revsal.v49n1-2017008
- Lukaszewicz-Hussain, A., 2010. Role of oxidative stress in organophosphate insecticide toxicity - Short review. Pestic. Biochem. Physiol. 98, 145–150. https://doi.org/10.1016/j.pestbp.2010.07.006
- Correia, K.M., Smee, D.L., 2018. Organophosphate Pesticides Alter Blue Crab (Callinectes sapidus) Behavior in Single and Consecutive Exposures. Arch. Environ. Contam. Toxicol. 75, 134–144. https://doi.org/10.1007/s00244-018-0536-8
- Leão, S.C., De Araújo, J.F., Silveira, A.R., Queiroz, A.A.F., Souto, M.J.S., Almeida, R.O., Maciel, D.C., De Andrade Rodrigues, T.M., 2015. Management of exogenous intoxication by carbamates and organophosphates at an emergency unit. Rev. Assoc. Med. Bras. 61, 440–445. https://doi.org/10.1590/1806-9282.61.05.440
- Muñoz-Quezada, M.T., Lucero, B.A., Iglesias, V.P., Muñoz, M.P., Cornejo, C.A., Achu, E., Baumert, B., Hanchey, A., Concha, C., Brito, A.M., Villalobos, M., 2016. Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farmworkers: a review. Int. J. Occup. Environ. Health 22, 68–79. https://doi.org/10.1080/10773525.2015.1123848
- Gupta, V.K., Kumar, A., Pereira, M. de L., Siddiqi, N.J., Sharma, B., 2020. Anti-inflammatory and antioxidative potential of aloe vera on the cartap and malathion mediated toxicity in wistar rats. Int. J. Environ. Res. Public Health 17, 1–19. https://doi.org/10.3390/ijerph17145177
- Suratman, S., Edwards, J.W., Babina, K., 2015. Organophosphate pesticides exposure among farmworkers: Pathways and risk of adverse health effects. Rev. Environ. Health 30, 65–79. https://doi.org/10.1515/reveh-2014-0072
- Ramirez-Vargas, M.A., Flores-Alfaro, E., Uriostegui-Acosta, M., Alvarez-Fitz, P., Parra-Rojas, I., Moreno-Godinez, M.E., 2018. Effects of exposure to malathion on blood glucose concentration: a meta-analysis. Environ. Sci. Pollut. Res. 25, 3233–3242. https://doi.org/10.1007/s11356-017-0890-5
- Eddleston, M., Street, J.M., Self, I., Thompson, A., King, T., Williams, N., Naredo, G., Dissanayake, K., Yu, L.M., Worek, F., John, H., Smith, S., Thiermann, H., Harris, J.B., Eddie Clutton, R., 2012. A role for solvents in the toxicity of agricultural organophosphorus pesticides. Toxicology 294, 94–103. https://doi.org/10.1016/j.tox.2012.02.005
- Ezzi, L., Belhadj Salah, I., Haouas, Z., Sakly, A., Grissa, I., Chakroun, S., Kerkeni, E., Hassine, M., Mehdi, M., Ben Cheikh, H., 2016. Histopathological and genotoxic effects of chlorpyrifos in rats. Environ. Sci. Pollut. Res. 23, 4859–4867. https://doi.org/10.1007/s11356-015-5722-x
- Lionetto, M.G., Caricato, R., Calisi, A., Giordano, M.E., Schettino, T., 2013. Acetylcholinesterase as a biomarker in environmental and occupational medicine: New insights and future perspectives. Biomed Res. Int. 2013. https://doi.org/10.1155/2013/321213
- Slavica, V., Dubravko, B., Milan, J., 2018. Acute organophosphate poisoning: 17 years of experience of the National Poison Control Center in Serbia. Toxicology 409, 73–79. https://doi.org/10.1016/j.tox.2018.07.010
- Hosseini, S.A., Saidijam, M., Karimi, J., Yadegar Azari, R., Hosseini, V., Ranjbar, A., 2019. Cerium Oxide Nanoparticle Effects on Paraoxonase-1 Activity and Oxidative Toxic Stress Induced by Malathion: A Potential Antioxidant Compound, Yes or No? Indian J. Clin. Biochem. 34, 336–341. https://doi.org/10.1007/s12291-018-0760-z
- Vanova, N., Pejchal, J., Herman, D., Dlabkova, A., Jun, D., 2018. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy. J. Appl. Toxicol. 38, 1058–1070. https://doi.org/10.1002/jat.3605
- Alvim, T.T., Martinez, C.B. dos R., 2019. Genotoxic and oxidative damage in the freshwater teleost Prochilodus lineatus exposed to the insecticides lambda-cyhalothrin and imidacloprid alone and in combination 842, 85–93. https://doi.org/10.1016/j.mrgentox.2018.11.011
- Naughton SX, Terry AV Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology. 2018 Sep 1;408:101-112. doi: 10.1016/j.tox.2018.08.011. Epub 2018 Aug 23. PMID: 30144465; PMCID: PMC6839762.
- Bhavsar, S.K.; Gu, S.; Bobbala, D.; Lang, F. Janus Kinase 3 Is Expressed in Erythrocytes, Phosphorylated upon Energy Depletion and Involved in the Regulation of Suicidal Erythrocyte Death. Cell. Physiol. Biochem., 2011, 27, 547–556. https://doi.org/10.1159/000329956
- Ortega Freyre, E.G., Carrera Gracia, M.A., Delgadillo Guzmán, D., Intriago Ortega, M.P., Lares Bayona, E.F., Quintanar Escorza, M.A., 2016. Asociación de la exposición ocupacional a plaguicidas organofosforados con el daño oxidativo y actividad de acetilcolinesterasa. Rev. Toxicol. 33, 39–43.
- Bhatti GK, Bhatti JS, Kiran R, Sandhir R. Alterations in Ca²⁺ homeostasis and oxidative damage induced by ethion in erythrocytes of Wistar rats: ameliorative effect of vitamin E. Environ Toxicol Pharmacol. 2011 May;31(3):378-86. doi: 10.1016/j.etap.2011.01.004. Epub 2011 Feb 4. PMID: 21787708.
- Farag MR, Alagawany M. Erythrocytes as a biological model for screening of xenobiotics toxicity. Chem Biol Interact. 2018 Jan 5;279:73-83. doi: 10.1016/j.cbi.2017.11.007. Epub 2017 Nov 8. PMID: 29128605.
- Lang, F., Gulbins, E., Lerche, H., Huber, S.M., Kempe, D.S., Föller, M., 2008. Cellular Physiology and Biochemistry Biochemistry Eryptosis , a Window to Systemic Disease 373–380.
- Lang F, Gulbins E, Lang PA, Zappulla D, Föller M. Ceramide in suicidal death of erythrocytes. Cell Physiol Biochem. 2010;26(1):21-8. doi: 10.1159/000315102. Epub 2010 May 18. PMID: 20502001.
- Aguilar-Dorado, I.C., Hernández, G., Quintanar-Escorza, M.A., Maldonado-Vega, M., Rosas-Flores, M., Calderón-Salinas, J.V., 2014. Eryptosis in lead-exposed workers. Toxicol. Appl. Pharmacol. 281, 195–202. https://doi.org/10.1016/j.taap.2014.10.003
- F., L., E., G., P.A., L., D., Z., M., F., 2010. Ceramide in suicidal death of erythrocytes. Cell. Physiol. Biochem. 26, 21–28.
- Lang, F., Abed, M., Lang, E., Föller, M., 2014. Oxidative stress and suicidal erythrocyte death. Antioxidants Redox Signal. 21, 138–153. https://doi.org/10.1089/ars.2013.5747
- Lang, P.A., Kaiser, S., Myssina, S., Wieder, T., Lang, F., Huber, S.M., 2003. Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am. J. Physiol. - Cell Physiol. 285, 1553–1560. https://doi.org/10.1152/ajpcell.00186.2003
- Sharma, R.K., Jaiswal, S.K., Siddiqi, N.J., Sharma, B., 2012. Effect of carbofuran on some biochemical indices of human erythrocytes in vitro. Cell. Mol. Biol. 58, 103–109. https://doi.org/10.1170/T927
- Uchendu, C., Ambali, S.F., Ayo, J.O., Esievo, K.A.N., Umosen, A.J., 2014. Erythrocyte osmotic fragility and lipid peroxidation following chronic co-exposure of rats to chlorpyrifos and deltamethrin, and the beneficial effect of alpha-lipoic acid. Toxicol. Reports 1, 373–378. https://doi.org/10.1016/j.toxrep.2014.07.002
- Escorza, Q., Angélica, M., Salinas, C., Víctor, J., 2009. L a C Apacidad a Ntioxidante T Otal .
- Bissinger, R., Bhuyan, A.A.M., Qadri, S.M., Lang, F., 2019. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J. 286, 826–854. https://doi.org/10.1111/febs.14606
- Lang, E., Qadri, S.M., Lang, F., 2012. Killing me softly - Suicidal erythrocyte death. Int. J. Biochem. Cell Biol. 44, 1236–1243. https://doi.org/10.1016/j.biocel.2012.04.019
- El-Gharieb, M.A., El-Masry, T.A., Emara, A.M., Hashem, M.A., 2010. Potential hepatoprotective effects of vitamin E and Nigella sativa oil on hepatotoxicity induced by chronic exposure to malathion in human and male albino rats. Toxicol. Environ. Chem. 92, 391–407. https://doi.org/10.1080/02772240902955719
- Sadiqul, I.M., Kabir, S.M., Ferdous, Z., Mansura, K.M., Khalilur, R.M., 2017. Chronic exposure to quinalphos shows biochemical changes and genotoxicity in erythrocytes of silver barb, Barbonymus gonionotus. Interdiscip. Toxicol. 10, 99–106. https://doi.org/10.1515/intox-2017-0016
- Rendón-Ramírez AL, Maldonado-Vega M, Quintanar-Escorza MA, Hernández G, Arévalo-Rivas BI, Zentella-Dehesa A, Calderón-Salinas JV. Effect of vitamin E and C supplementation on oxidative damage and total antioxidant capacity in lead-exposed workers. Environ Toxicol Pharmacol. 2014 Jan;37(1):45-54. doi: 10.1016/j.etap.2013.10.016. Epub 2013 Nov 13. PMID: 24560336.
- Pinzón-Díaz CE, Calderón-Salinas JV, Rosas-Flores MM, Hernández G, López-Betancourt A, Quintanar-Escorza MA. Eryptosis and oxidative damage in hypertensive and dyslipidemic patients. Mol Cell Biochem. 2018 Mar;440(1-2):105-113. doi: 10.1007/s11010-017-3159-x. Epub 2017 Aug 18. PMID: 28822022.
- Galván-Meléndez, M.F., Calderón-Salinas, J.V., Del Pilar Intriago-Ortega, M., Torres-Castorena, A., Zamarripa-Escobedo, R., Meléndez-Hurtado, C.D., Quintanar-Escorza, M.A., 2014. Estrés oxidativo en pacientes con diferente expresividad clínica del síndrome metabólico. Med. Interna Mex. 30, 651–659.
- Quintanar-Escorza, M.A., González-Martínez, M.T., Navarro, L., Maldonado, M., Arévalo, B., Calderón-Salinas, J. V., 2007. Intracellular free calcium concentration and calcium transport in human erythrocytes of lead-exposed workers. Toxicol. Appl. Pharmacol. 220, 1–8. https://doi.org/10.1016/j.taap.2006.10.016
- Lew, V.L., Tiffert, T., Etzion, Z., Perdomo, D., Daw, N., Macdonald, L., Bookchin, R.M., 2005. Distribution of dehydration rates generated by maximal Gardos-channel activation in normal and sickle red blood cells. Blood 105, 361–367. https://doi.org/10.1182/blood-2004-01-0125
- Petersson, K., Jakobsson, O., Ohlsson, P., Augustsson, P., Scheding, S., Malm, J., Laurell, T., 2018. Acoustofluidic hematocrit determination. Anal. Chim. Acta 1000, 199–204. https://doi.org/10.1016/j.aca.2017.11.037
- Ogut S, Gultekin F, Kisioglu AN, Kucukoner E. Oxidative stress in the blood of farm workers following intensive pesticide exposure. Toxicol Ind Health. 2011 Oct;27(9):820-5. doi: 10.1177/0748233711399311. Epub 2011 Mar 30. PMID: 21450927.
- Ojha A, Srivastava N. In vitro studies on organophosphate pesticides induced oxidative DNA damage in rat lymphocytes. Mutat Res Genet Toxicol Environ Mutagen. 2014 Feb;761:10-7. doi: 10.1016/j.mrgentox.2014.01.007. Epub 2014 Jan 24. PMID: 24468856.
- Moura, L.T.R. de; Bedor, C.N.G.; Lopez, R.V.M.; Santana, V.S.; Rocha, T.M.B. da S. da; Wünsch Filho, V.; Curado, M.P. Exposição Ocupacional a Agrotóxicos Organofosforados e Neoplasias Hematológicas: Uma Revisão Sistemática. Rev. Bras. Epidemiol., 2020, 23, e200022. https://doi.org/10.1590/1980-549720200022
- Payán-Rentería R, Garibay-Chávez G, Rangel-Ascencio R, Preciado-Martínez V, Muñoz-Islas L, Beltrán-Miranda C, Mena-Munguía S, Jave-Suárez L, Feria-Velasco A, De Celis R. Effect of chronic pesticide exposure in farm workers of a Mexico community. Arch Environ Occup Health. 2012;67(1):22-30. doi: 10.1080/19338244.2011.564230. PMID: 22315932.
- Abdel-Daim, M.M., Abushouk, A.I., Bungău, S.G., Bin-Jumah, M., El-kott, A.F., Shati, A.A., Aleya, L., Alkahtani, S., 2020. Protective effects of thymoquinone and diallyl sulfide against malathion-induced toxicity in rats. Environ. Sci. Pollut. Res. 27, 10228–10235. https://doi.org/10.1007/s11356-019-07580-y
- Coban, F.K.; Ince, S.; Kucukkurt, I.; Demirel, H.H.; Hazman, O. Boron Attenuates Malathion-Induced Oxidative Stress and Acetylcholinesterase Inhibition in Rats. Drug Chem. Toxicol., 2015, 38, 391–399. https://doi.org/10.3109/01480545.2014.974109
- Zahran, E., Risha, E., Awadin, W., Palić, D., 2018. Acute exposure to chlorpyrifos induces reversible changes in health parameters of Nile tilapia (Oreochromis niloticus). Aquat. Toxicol. 197, 47–59. https://doi.org/10.1016/j.aquatox.2018.02.001
- Berend, S.; Musilek, K. Effects of Oxime K203 and Oxidative Stress in Plasma of Tabun Poisoned. 2012, 85, 193–199. http://dx.doi.org/10.5562/cca1811
- Sosnowska B, Huras B, Bukowska B. Oxidative stress in human erythrocytes treated with bromfenvinphos and its impurities. Pestic Biochem Physiol. 2015 Feb;118:43-9. doi: 10.1016/j.pestbp.2014.11.009. Epub 2014 Nov 26. PMID: 25752429
- Dalbó J, Filgueiras LA, Mendes AN. Effects of pesticides on rural workers: haematological parameters and symptomalogical reports. Cien Saude Colet. 2019 Jul 22;24(7):2569-2582. doi: 10.1590/1413-81232018247.19282017. PMID: 31340274.
- AYI-FANOU, L. Influence of Pesticide on Biochemical and Hematological Parameters in Beninese Vegetable Farmers. J. Biol. Life Sci., 2018, 9, 65. https://doi.org/10.5296/jbls.v9i1.12461
- Piccoli S, Mehta D, Vitaliti A, Allinson J, Amur S, Eck S, Green C, Hedrick M, Hopper S, Ji A, Joyce A, Litwin V, Maher K, Mathews J, Peng K, Safavi A, Wang YM, Zhang Y, Amaravadi L, Palackal N, Thankamony S, Beaver C, Bame E, Emrich T, Grimaldi C, Haulenbeek J, Joyce A, Kakkanaiah V, Lanham D, Maher K, Mayer A, Trampont PC, Vermet L, Dakappagari N, Fleener C, Garofolo F, Rogers C, Tangri S, Xu Y, Liang M, Rajadhyaksha M, Richards S, Schweighardt B, Purushothama S, Baltrukonis D, Brumm J, Cherry E, Delcarpini J, Gleason C, Kirshner S, Kubiak R, Pan L, Partridge M, Pedras-Vasconcelos J, Qu Q, Skibeli V, Saunders TS, Staack RF, Stubenrauch K, Torri A, Verthelyi D, Yan H, Gorovits B, Palmer R, Milton M, Long B, Corsaro B, Farrokhi V, Fiscella M, Henderson N, Jawa V, McNally J, Murphy R, Waldner H, Yang TY. 2019 White Paper on Recent Issues in Bioanalysis: FDA Immunogenicity Guidance, Gene Therapy, Critical Reagents, Biomarkers and Flow Cytometry Validation (Part 3 - Recommendations on 2019 FDA Immunogenicity Guidance, Gene Therapy Bioanalytical Challenges, Strategies for Critical Reagent Management, Biomarker Assay Validation, Flow Cytometry Validation & CLSI H62). Bioanalysis. 2019 Dec;11(24):2207-2244. doi: 10.4155/bio-2019-0271. Epub 2019 Dec 10. PMID: 31820675.
- Manyilizu WB, Mdegela RH, Kazwala R, Nonga H, Muller M, Lie E, Skjerve E, Lyche JL. Association of Long-Term Pesticide Exposure and Biologic Parameters in Female Farm Workers in Tanzania: A Cross Sectional Study. Toxics. 2016 Sep 29;4(4):25. doi: 10.3390/toxics4040025. PMID: 29051428; PMCID: PMC5606649.